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By mitigating ionospheric disturbances in LiDAR-GPS fusion, we enhance
positioning reliability for high-precision applications. Future extensions of
this work include Vehicle-to-Vehicle (V2V) LiDAR

Abstract Phase-2: Aspired Integrations

Lidar-based localization relies on landmark matching, where detected features (e.g.,
buildings, road signs) are compared to a known map to refine positioning. Simultaneous
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